

Regioselective Cycloaddition of Trifluorodiazoethane with Electron-Deficient Allenic Esters and Ketones: Access to CF₃-Substituted **Pyrazolines and Pyrazoles**

Fa-Guang Zhang, Yi Wei, Yu-Ping Yi, Jing Nie, and Jun-An Ma*

Department of Chemistry, Key Laboratory of Systems Bioengineering (the Ministry of Education), Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China

Supporting Information

ABSTRACT: A highly regioselective cycloaddition procedure of electron-deficient allenes with trifluorodiazoethane (CF₃CHN₂) is described. In absence of bases, the reaction proceeded smoothly to give 5-(trifluoromethyl)pyrazolines, whereas the utility of Et₃N led to the formation of 3-(trifluoromethyl)pyrazoles.

rifluoromethyl-substituted pyrazolines and pyrazoles are privileged structural motifs found in many pharmaceuticals and bioactive compounds (Figure 1), and thus, the

Figure 1. Bioactive molecules based on trifluoromethylated pyrazolines and pyrazoles.

factor Xa inhibitor1i

development of new methodologies for constructing these compounds has been an active research area in organic synthesis and drug chemistry.² The cycloaddition of 2,2,2-trifluorodiazoethane (CF₃CHN₂) with alkenes and alkynes represents a convenient access to trifluoromethylated pyrazolines and pyrazoles (Scheme 1a). In this context, the earlier studies focused on the use of liquid CF3CHN2 purified at superlow temperature.3 Unfortunately, these methods usually suffer from relatively harsh reaction conditions and limited

Scheme 1. Cycloaddition Reactions of CF₃CHN₂ with Electron-Deficient Alkenes, Alkynes, and Allenes

a) Previous work

dipolarophile scope. To overcome the problems, our group developed silver-mediated [3 + 2] cycloaddition of alkynes with the stock solution of CF₃CHN₂ in organic solvents, whereas Mykhailiuk and co-workers reported the [3 + 2] cycloaddition of the in situ generated CF₃CHN₂ with electron-deficient alkenes and alkynes to give a series of trifluoromethylsubstituted pyrazolines and pyrazoles.⁵ In comparison with the previous methods, these newly protocols employ milder conditions and afford the desired adducts with improved functional group tolerance. Despite this promising progress, it is still highly desirable to develop new cycloaddition reactions

Received: May 1, 2014 Published: May 21, 2014 Organic Letters Letter

with CF₃CHN₂ and to broaden the diversity of trifluoromethylated pyrazoline and pyrazole species.

In recent years, allenes, in particular electron-deficient allenes, have emerged as attractive building blocks in organic synthesis, and many cycloaddition reactions of electron-deficient allenes have been developed for the construction of carbo- and heterocyclic molecules. However, the use of electron-deficient allenes as the dipolarophiles for the cycloaddition reaction of CF₃CHN₂ still remains elusive. Herein, we report our efforts in the development of this cycloaddition process (Scheme 1b). Such studies would be of benefit in expanding the diversity of pyrazoline and pyrazole derivatives in synthetic chemistry.

We began our investigations by evaluating the stock solution of CF₃CHN₂ in several solvents, and the results are shown in Table 1. To our surprise, at room temperature and without any

Table 1. Screening Optimal Conditions^a

$$CO_2Bn + CF_3CHN_2$$
 solvent F_3C N N H $2a$

entry	CF_3CHN_2 in solvent (mol/L, equiv)	$\begin{array}{c} temp\ (^{\circ}C)/time \\ (h) \end{array}$	yield ^b (%)
1	DMF (0.15, 2.0)	25/30	50
2	DMF (0.15, 2.0)	40/30	83
3	DMF (0.15, 2.0)	60/30	82
4	THF (0.2, 2.0)	40/30	82
5	Toluene (0.15, 2.0)	40/30	68
6	DCE (0.3, 3.0)	40/30	45
7	DCM (0.2, 3.0)	40/30	10
8	DME (0.15, 3.0)	40/30	10
9	CH ₃ CN (0.2, 3.0)	40/30	0
10	DMF (0.15, 2.0)	40/48	88
11	DMF (0.15, 2.0)	40/60	85

^aGeneral reaction conditions: benzyl allenoate 1a (0.2 mmol, 1.0 equiv) and CF₃CHN₂ in appropriate solvent were reacted in a sealed tube at constant temperature. ^bIsolated yield.

additive, the cycloaddition of benzylbuta-2,3-dienoate 1a with CF₃CHN₂ in *N*,*N*-dimethylformamide (DMF) proceeded to give 5-trifluoromethylpyrazoline 2a as a single regioisomer in 50% yield (entry 1). Increasing the reaction temperature provided 2a in higher yields (entries 2 and 3). Good yield of the cycloadduct 2a was also obtained in tetrahydrofuran (THF) (entry 4). The utility of other solvents, such as toluene, dichloroethane (DCE), dichloromethane (DCM), and 1,2-dimethoxyethane (DME), led to a corresponding decrease in the yield for 2a (entries 5–8). The cycloaddition reaction of 1a with CF₃CHN₂ did not occur in acetonitrile (entry 9). Finally, the yield of the cycloadduct 2a could be further improved to 88% in DMF with prolonged reaction time (entries 10 and 11).

With these optimized conditions in hand, we set out to investigate the scope of this cycloaddition reaction (Scheme 2). A broad range of γ -alkyl-substituted allenoate esters have been successfully employed in our approach, and a series of 5-(trifluoromethyl)pyrazolines **2b**-**f** were obtained in 78–86% yields. Two γ -alkenyl-substituted allenoate esters were subjected to this cycloaddition reaction under the same conditions, and the corresponding products **2g** and **2h** were obtained in good yields without any detectable quantities of other

Scheme 2. Cycloaddition of CF₃CHN₂ with Electron-Deficient Allenes 1 into 5-Trifluoromethylpyrazolines 2^a

 $^a\mathrm{General}$ reaction conditions: allene 1 (0.2 mmol, 1.0 equiv) and $\mathrm{CF_3CHN_2}$ (0.4 mmol, 2.0 equiv) in DMF were reacted in a sealed tube at 40 $^{\circ}\mathrm{C}$ for 48 h. $^b\mathrm{Isolated}$ yield.

cycloaddition or cyclopropanation byproducts despite the presence of olefin moieties in the reactants. Several allenoates with different ester substituents were also capable in this approach to give the cycloadducts 2i-1 in high yields. The exocyclic C=C double bond was determined to be Z geometry by a 2D-NOESY analysis of 2i (see the Supporting Information). Furthermore, this can be rationalized by assuming that trifluorodiazoethane is approaching from the less hindered side of the substituted allene to generate (Z)product (Figure 2). In addition, enhanced 1,3-allylic strain in the formed (E)-cycloadduct should favor formation of the (Z)product. Subsequently, two allenic ketones could also be used as the dipolarophile partners, thus providing the cycloadducts 2m and 2n in the yield of 82% and 56%, respectively. Finally, we investigated the cycloaddition reaction of trifluorodiazoethane with γ -aryl-substituted allenoate esters, such as benzyl γ phenylbuta-2,3-dienoate, benzyl γ -(2-thiophenyl)buta-2,3-dienoate, and ethyl γ-phenylbuta-2,3-dienoate. These substrates were found to be unsuitable for this transformation, and no desired cycloadducts were obtained even when the reaction temperature was increased to 80 °C.

It is noteworthy that, under the catalysis of triethylamine, 5-(trifluoromethyl)pyrazoline 2a could be readily isomerized into the 3-(trifluoromethyl)pyrazole 3a in essentially quantitative yield (Scheme 3). Furthermore, the structure of 3a was

Organic Letters Letter

Figure 2. Steric interactions favoring formation of (Z)-cycloadducts.

Scheme 3. Isomerization of 2a into 3a

$$F_3C \overset{\hbox{\scriptsize CO}_2Bn}{\underset{\hbox{\scriptsize H}}{\bigvee}} \underbrace{ \begin{array}{c} CO_2Bn \\ Et_3N \ (0.2 \ equiv) \\ toluene, \ rt \\ 100\% \ conversion \end{array}}_{F_3C} \overset{\hbox{\scriptsize CO}_2Bn}{\underset{\hbox{\scriptsize N}}{\bigvee}} \overset{\hbox{\scriptsize NH}}{\underset{\hbox{\scriptsize NH}}{\bigvee}}$$

confirmed by means of X-ray crystallographic analysis (see the Supporting Information). These interesting findings prompted us to investigate further $\rm Et_3N$ -triggered one-pot cycloaddition of $\rm CF_3CHN_2$ with electron-deficient allenic esters and ketones. Careful reaction optimization revealed that the cycloaddition is best conducted with 20 mol % of $\rm Et_3N$ in toluene at 40 °C (see the Supporting Information). Results of the cycloaddition of various electron-deficient allenes with $\rm CF_3CHN_2$ are summarized in Scheme 4.

We found that the allene scope of the Et₃N-triggered cycloaddition with trifluorodiazoethane is fairly broad. A series of γ-alkyl-substituted allenoate esters delivered the cycloadducts 3a-f in good to high yields. Moreover, γ-alkyl linkers carrying chloro, ester, and thioether substituents, as well as olefin moieties are compatible with this cycloaddition reaction, furnishing 5-(trifluoromethyl)pyrazoles 3g-k in 51-78% yields. γ-Aryl- and heteroaryl-substituted allenoate esters also participated in this transformation, giving rise to the cycloadducts 3l and 3m in the yield of 76% and 71%, respectively. In addition, other electron-deficient allenic esters and ketones were employed as dipolarophile substrates, and the corresponding cycloadducts 3n-p were obtained in good yields. It is well known that 3-alkynoates can be readily isomerized to allenoates upon treatment with organic bases.8 Thus, the present protocol was further extended to a one-pot sequential isomerization/ cycloaddition of 3-alkynoate 4 with trifluorodiazoethane in the presence of triethylamine, and the desired cycloadduct 3n was produced in 84% yield (Scheme 5). In sharp contrast, in the absence of Et₃N the cycloaddition reaction of 3-alkynoate 4 with CF₃CHN₂ did not proceed smoothly, and only a trace of product 3n was detected by ¹⁹F NMR spectrometry.

In summary, we have successfully developed a novel and efficient procedure for highly regioselective cycloaddition of electron-deficient allenic esters and ketones with trifluorodiazoethane. A variety of 5-(trifluoromethyl)pyrazolines and 3-(trifluoromethyl)pyrazoles can be accessed in good to high yields under the mild reaction conditions. Further application of this cycloaddition reaction and detailed mechanistic studies are underway in our laboratory.

Scheme 4. Et₃N-Triggered Cycloaddition of CF₃CHN₂ with Electron-Deficient Allenes 1^a

 a General reaction conditions: allene 1 (0.2 mmol, 1.0 equiv), CF $_3$ CHN $_2$ (0.4 mmol, 2.0 equiv), and Et $_3$ N (0.04 mmol, 0.2 equiv) in toluene reacted in sealed tube at 40 $^{\circ}$ C for 30 h. b Isolated yield.

Scheme 5. Et₃N-Catalyzed One-Pot Sequential Isomerization/Cycloaddition of 3-Alkynoate 4

ASSOCIATED CONTENT

Supporting Information

Experimental details, spectral data of all the new compounds, and X-ray data for 3a (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: majun an68@tju.edu.cn.

Notes

The authors declare no competing financial interest.

Organic Letters Letter

■ ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Nos. 21172170 and 21225208) and the National Basic Research Program of China (973 Program, 2014CB745100).

REFERENCES

- (1) For reviews on bioactive pyrazolines and pyrazoles, see: (a) Lamberth, C. Heterocycles 2007, 71, 1467. (b) Kumar, S.; Bawa, S.; Drabu, S.; Kumar, R.; Gupta, H. Recent Pat. Anti-Infect. Drug Discovery 2009, 4, 154. (c) Elguero, J.; Silva, A. M. S.; Tomé, A. C. In Modern Heterocyclic Chemistry, 1st ed.; Wiley-VCH Verlag: Weinheim, 2011; p 635. (d) Liu, X.-H.; Ruan, B.-F.; Li, J.; Chen, F.-H.; B, A.; Song, B.-A.; Zhu, H.-L.; Bhadury, P. S.; Zhao, J. Mini-Rev. Med. Chem. 2011, 11, 771. (e) Ganesh, A. Int. J. Pharma Bio. Sci. 2013, 4, 727. For selected examples, see: (f) Cuberes, R.; Berrocal, J.; Contijoch, M.; Frigola, J. WO 99/62884, 1999. (g) Zhang, X.; Li, X.; Allan, G. F.; Sbriscia, T.; Linton, O.; Lundeen, S. G.; Sui, Z. J. Med. Chem. 2007, 50, 3857. (h) Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S.; Greneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.; Isakson, P. C. J. Med. Chem. 1997, 40, 1347. (i) Varnes, J. G.; Wacker, D. A.; Pinto, D. J. P.; Orwat, M. J.; Theroff, J. P.; Wells, B.; Galemo, R. A.; Luettgen, J. M.; Knabb, R. M.; Bai, S.; He, K.; Lam, P. Y. S.; Wexler, R. R. Bioorg. Med. Chem. Lett. 2008, 18, 749.
- (2) For selected reviews, see: (a) Yet, L. In Comprehensive Heterocyclic Chemistry III, 1st ed.; Elsevier: Oxford, 2008; Vol 4, p 1. (b) Kissane, M.; Maguire, A. R. Chem. Soc. Rev. 2010, 39, 845. (c) Küchenthal, C.-H.; Maison, W. Synthesis 2010, 719. (d) Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. Chem. Rev. 2011, 111, 6984. (e) Janin, Y. L. Chem. Rev. 2012, 112, 3924. (f) Marella, A.; Ali, M. R.; Alam, M. T.; Saha, R.; Tanwar, O.; Akhter, M.; Shaquiquzzaman, M.; Mumtaz Alam, M. Mini-Rev. Med. Chem. 2013, 13, 921.
- (3) (a) Dyatkin, B. L.; Mochalina, E. P. *Izv. Akad. Nauk SSSR, Ser. Khim.* **1964**, *7*, 1225. (b) Atherton, J. H.; Fields, R. *J. Chem. Soc. C* **1968**, 1507. (c) Fields, R.; Tomlinson, J. P. *J. Fluorine Chem.* **1979**, 13, 147.
- (4) Li, F.; Nie, J.; Sun, L.; Zheng, Y.; Ma, J.-A. Angew. Chem., Int. Ed. 2013, 52, 6255.
- (5) (a) Artamonov, O. S.; Slobodyanyuk, E. Y.; Shishkin, O. V.; Komarov, I. V.; Mykhailiuk, P. K. *Synthesis* **2013**, 225. (b) Slobodyanyuk, E. Y.; Artamonov, O. S.; Shishkin, O. V.; Mykhailiuk, P. K. *Eur. J. Org. Chem.* **2014**, 2487.
- (6) For selected reviews, see: (a) Hoffmann-Röder, A.; Krause, N. Angew. Chem., Int. Ed. 2002, 41, 2933. (b) Wei, L.-L.; Xiong, H.; Hsung, R. P. Acc. Chem. Res. 2003, 36, 773. (c) Miesch, M. Synthesis 2004, 746. (d) Ma, S. Chem. Rev. 2005, 105, 2829. (e) Ma, S. Acc. Chem. Res. 2009, 42, 1679. (f) Lu, T.; Lu, Z.; Ma, Z.-X.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2013, 113, 4862.
- (7) For selected reviews, see: (a) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535. (b) Lu, X.; Du, Y.; Lu, C. Pure Appl. Chem. 2005, 77, 1985. (c) Ye, L.-W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37, 1140. (d) Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed. 2008, 47, 1560. (e) Cowen, B. J.; Miller, S. J. Chem. Soc. Rev. 2009, 38, 3102. (f) Wei, Y.; Shi, M. Acc. Chem. Res. 2010, 43, 1005. (g) Wang, S.; Han, X.; Zhong, F.; Wang, Y.; Lu, Y. Synlett 2011, 2766. (h) López, F.; Mascarenas, J. L. Chem.—Eur. J. 2011, 418.
- (8) (a) Jung, M. E.; Node, M.; Pfluger, R. W.; Lyster, M. A.; Lowe, J. A., III. J. Org. Chem. 1982, 47, 1150. (b) Jung, M. E.; Lowe, J. A., III; Lyster, M. A.; Node, M.; Pfluger, R. W.; Brown, R. W. Tetrahedron 1984, 40, 4751. (c) Yasukouchi, T.; Kanematsu, K. Tetrahedron Lett. 1989, 30, 6559. (d) Ma, D.; Yu, Y.; Lu, X. J. Org. Chem. 1989, 54, 1105. (e) Oku, M.; Arai, S.; Katayama, K.; Shioiri, T. Synlett 2000, 493. (f) Liu, H.; Leow, D.; Huang, K.; Tan, C. J. Am. Chem. Soc. 2009, 131, 7212. (g) Sampath, M.; Loh, T. P. Chem. Sci. 2011, 1, 739.

(h) Inokuma, T.; Furukawa, M.; Suzuki, Y.; Kimachi, T.; Kobayashi, Y.; Takemoto, Y. ChemCatChem 2012, 4, 983.